In p-adic geometry, what should it mean for a morphism to be a Zariski-closed immersion? For locally Noetherian adic spaces, the usual notion of a closed immersion of locally ringed spaces works just fine. For general analytic adic spaces, though, one quickly runs into annoying foundational issues. The issue is roughly as follows. Let be an (analytic) affinoid adic space. We can certainly define a reasonable notion of Zariski-closed subset, just by following our nose: a subset
should be Zariski-closed if there is an ideal
such that
iff
. These are exactly the subsets obtained by pulling back closed subsets of
along the natural map
. The problem, however, is that such a
need not come from an actual closed immersion of an affinoid adic space into
, because the quotient
could just be some junky non-sheafy ring, and maybe there’s no canonical tweak (like replacing
by its closure, or replacing
by its uniform completion, or…) which will make it sheafy. And even if we can tweak
to make it sheafy, how do we know that
is still surjective after going to some rational subset
? You get the picture.
Perhaps surprisingly, the situation for affinoid perfectoid spaces is a lot better. In particular, if is a perfectoid Tate-Huber pair, there are canonical bijections (satisfying some obvious compatibilities) between
1) closed subsets of ,
2) Zariski-closed subsets of ,
3) (isomorphism classes of) maps of Tate-Huber pairs where
is a perfectoid Tate ring,
is surjective, and
is the integral closure of the image of
in
.
We’ve already discussed the bijection 1) <–> 2). For 3) –> 1) or 2), just send to the closed subset cut out by the ideal
. The miracle is the association 2) –> 3), which holds by an amazing theorem of Bhatt: if
is a closed ideal in a perfectoid Tate ring
, then the uniform completion
of
is perfectoid and the natural map
is surjective, cf. Theorem 2.9.12 in Kedlaya’s notes here. Moreover, the map
remains surjective after rational localization on
. In particular, if
is a Zariski-closed subset, then 2) –> 3) gives an honest closed immersion
of locally ringed spaces, and
maps homeomorphically onto
.
The point of all this is that Zariski-closed immersions of affinoid perfectoid spaces behave as well as one could ever dream (with one caveat, which I’ll get to later). The following definition then suggests itself.
Definition. A map of small v-stacks is a Zariski-closed immersion if for any affinoid perfectoid space
with a map
, the base change
is a Zariski-closed immersion of affinoid perfectoid spaces.
Now of course we’re free to make any definition we want in mathematics, but if it doesn’t capture some essential idea or experimentally observed phenomenon, then who cares? Let me now give some evidence that this definition passes this test.
Example 0. The property of being a Zariski-closed immersion is preserved under composition and base change. If is a Zariski-closed immersion and
is (a small v-sheaf, a diamond, a locally spatial diamond, qc or qs or separated or partially proper over a base
), then so is
.
Example 1. Let be a closed immersion of locally Noetherian adic spaces. If
is affinoid (so
is too), then the map of diamonds
is a Zariski-closed immersion. This is easy.
Example 2. Let be a closed immersion of locally Noetherian adic spaces again, but now assume that
is the analytification of a closed immersion of quasiprojective varieties. Then
is a Zariski-closed immersion. For this, we can use the assumption on
to choose a vector bundle
on
together with a surjection
. Then for any map
from an affinoid perfectoid, the pullback
(in the usual sense of ringed spaces) is a vector bundle on
, hence generated by finitely many global sections
by Kedlaya-Liu. The images of
along the natural map
generate an ideal, and the associated closed immersion of affinoid perfectoids
represents the fiber product
. (Hat tip to PS for suggesting this vector bundle trick.)
Example 3. Let be a minimally compactified Hodge-type Shimura variety with infinite level at
. Then the boundary
is a Zariski-closed immersion, and so is the diagonal
. (These both reduce to the previous example, using a small limit argument in the second case.) In particular, if
are any open affinoid perfectoid subsets, then
is also affinoid perfectoid. This small observation plays a non-negligible role in my forthcoming paper with Christian Johansson, where (among other things) we prove that any minimally compactified Shimura variety of pre-abelian type with infinite level at
is perfectoid.
Example 4. Fix a perfectoid base field of characteristic zero. Then the inclusions
are Zariski-closed immersions of (ind-)diamonds over
. This can be proved by induction on
, and the base case reduces to the fact that the inclusion
is the pullback of
along
. (To make the induction work, you need to pick an element
generating
.)
Example 5. Fix a complete algebraically closed extension . Fix a reductive group
and a geometric conjugacy class of
-valued cocharacters
. Then
is a Zariski-closed immersion. Also, if
, then
is a Zariski-closed immersion. These claims can be reduced to the case
, which in turn reduces to Example 4 by some trickery.
Example 6. Fix a complete algebraically closed nonarchimedean field of residue characteristic
, and let
be any injective map of coherent sheaves on the Fargues-Fontaine curve
. Then the associated map of Banach-Colmez spaces
is a Zariski-closed immersion. This can also be reduced to Example 4.
Let me end with some caveats. First of all, I wasn’t able to prove that if is a closed immersion of reductive groups, the induced map
is a Zariski-closed immersion, although it is surely true. The problem here is (roughly) that an
-torsor over some affinoid perfectoid
can only be reduced to a
-torsor locally in the analytic topology on
, and we then run into the following open question:
Question. Is the property of being Zariski-closed local for the analytic topology? More precisely, if is affinoid perfectoid with a covering by rational subsets
, and
is a closed subset such that
is Zariski-closed in
for all
, is
Zariski-closed?
There are also naturally occurring closed things which probably aren’t Zariski-closed immersions. For instance, I don’t think the map of Banach-Colmez spaces is a Zariski-closed immersion, because then pulling back would imply that
is a Zariski-closed immersion, which seems extremely unlikely to me. (But I didn’t manage to disprove it! Actually, can one give an explicit example of an affinoid perfectoid
and a closed subset
such that
maps isomorphically to the completed residue field at every point in
and such that
is NOT Zariski-closed? Surely such examples exist.) I also don’t think (closures of) Newton strata in flag varieties are Zariski-closed immersions – they are just too weird.
I also wasn’t able to settle the following compatibility (but admittedly I didn’t try very hard).
Question. Let be a monomorphism of locally Noetherian adic spaces. If
is a Zariski-closed immersion, is
actually a closed immersion?
Happy new year!